

Network Modeling for Epidemics

1 From poker chips

to epidemic models

Constant growth: Summary

Was this process stochastic or deterministic?

I Model: Summary

Was this process stochastic or deterministic?

SI model

Each draw has 3 possible outcomes:

- **SS:** concordant negative
- SI: discordant
- II: concordant positive

Only SI creates incident infection

The probability of **SI** outcomes changes over time

- Low: at the start
- High: reaches its max when S=I,
- Low: decreases as S get depleted
- Bell shaped

1.	SS	9.	SS	17.	S	25.	Ш
2.	SS	10.	SS	18.	S	26.	S
3.	SS	11.	S	19.	н	27.	П
4.	SS	12.	SS	20.	S	28.	П
5.	SS	13.	SS	21.	SS	29.	П
6.	SS	14.	S	22.	н	30.	П
7.	SS	15.	П	23.	S	31.	П
8.	SI	16.	SI	24.	П	32.	П

SI Model: Summary

Population size	FINITE: $N = S + I$
Final epidemic size	N (everyone)
Prevalence curve	Logistic (slope = incidence)
Incidence curve	For poker chips: p(incident case) is bell shaped In general, the incidence curve is bell shaped Depends on S(t) and I(t)

Was this process stochastic or deterministic?

SI Model: New concepts

1. Susceptible depletion

As the pool of susceptibles shrinks

- The probability of drawing an II pair rises
- 'wasted' contacts (from the pathogen's perspective)

2. Equilibrium state

Eventually the epidemic ends

- Not because the infection dies out
- But because there's no one left to infect

The SIR model

This is where we stopped, about half way thru

Quiz results

Let's see how you did

SIR Model: Summary

Population size	FINITE: $N = S + I + \mathbb{R}$
Final epidemic size	0 : These infections always die out in a closed popn
Prevalence curve	Flat (if it dies out after the first case) Non-monotonic otherwise (roughly bell shaped in large populations) Slope = f(incidence and recovery)
Incidence curve	For poker chips: p(incident case) is bell shaped In general, the incidence curve is bell shaped Depends on S(t), I(t) and R(t)

Was this process stochastic or deterministic?

SIR : New concepts

1: Extinction

Time to extinction of I: stochastic in the poker chips (why?) Range is { D to D*N } (for our poker chips, 10 to 100) If the infection probability $\tau < 1$, it would depend on that too

2: Final prevalence of S and R

Variable, but has a range for S of {0, N-1} and for R of {1, N-1}

Depends on cumulative number of infections before extinction.

- The prevalence of I may be non-monotonic
- But the prevalence of S is monotonic decreasing
 Until it hits equilibrium
- And the prevalence of R is monotonic increasing
 Again, until it hits equilibrium

On stochasticity ...

Did we track the time of individual infected chips?

• Yes, ... and no

We replaced any one of the red chips in the bag with a white chip

- What assumption does this represent? Homogeneity/exchangeability of individual cases, and "memoryless" survival function (exponential distribution of survival times)
- Was there any stochasticity in the recovery dynamics at the population level?
 - No. Exactly 10 days after each infection, you get a recovery

Recovered/Immune cases

- Interfere with ongoing transmission
 - Lots of new contact pair possibilities that don't transmit
- As recovered/immune cases rise, incidence declines
 - This is related to the concept of "herd immunity"
 - Even if you're not immune, the immune cases around you give you protection.
 - And if we allow the probability of transmission to be < 1</p>
 - Even if you contact an infected person, you may not get infected

Zooming all the way back out

What's an example of an infection that has recovery with immunity?

Has that infection died out (the equilibrium state)?

So, what's missing in our model?

SIS: Recovery with Susceptibility (on your own)

INSTRUCTIONS: Prepare a bag with 9 blue and 1 red chips (S=blue, I=red)

- **1.** Pick two chips
 - If the chips are not red and blue, no infection occurs.
 - Replace both chips in bag, go to step (2)
 - If the chips are red and blue, infection occurs
 - Replace blue chip with red chip and return to bag
- 2. Update duration worksheet for any new and pre-existing infections
 - Increment each active row by 1 day

 If any durations are at {CHANGE STATE}, take a red chip from the bag and <u>replace it</u> with a blue chip

- 3. Update prevalence worksheet with the number of red chips currently in the bag
- 4. Are there any more red chips in the bag?
 - YES: Return to (1)
 - NO: Stop

SIS Model: Summary

Population size	FINITE: $N = S + I$
Final epidemic size	Depends on the model you're using (!!!!)
Prevalence curve	Flat (if it dies out after the first case) Non-monotonic otherwise (for a long time, and not bell-shaped) Slope = f(incidence and recovery)
Incidence curve	Like prevalence, flat 0 or non-monotonic

SIS : New concepts

1: Susceptible replenishment

S prevalence may also be non-monotonic now, which changes everything

2: Equilibrium prevalence in a closed (finite) population will depend on the type of model you're using

In a deterministic model, equilibrium prevalence can range from [0, N]

If there is stochasticity, infection will always eventually die out.

Final prevalence of *I* is always 0, and *S* is always N

But it can take ... forever to get there

And the probability of extinction at any time may be vanishingly small

¹⁹ Formalizing these concepts

Models have three basic components

- Elements "actors" in the model
- States attributes of system elements
- Transitions rates of movement between states

All models have these same building blocks

Model component 1: Elements

Elements can be

- Persons
- Animals
- Environmental reservoirs (water, soil)
- Etc.

Example: COVID transmission requires people

Is the pathogen a separate element?

- In some models, yes
- This week: no

Model component 2: States

States – attributes of elements. For example:

- Infection-related (Susceptible, Infected, Recovered....)
- Demographic (sex, age....)
- Behavioral (level of sociality; occupation....)
- Clinical (tested or not; on treatment or not...)
- Geospatial (community; coordinates....)
- Etc. etc. etc.

Example: A very simple COVID model has three host states:

susceptible (S)

infected (I)

recovered w/ immunity (R)

Model component 3: Transitions

Transitions – movement between states

- Deterministic: fixed rate of transition between states.
 - Uses a population mean rate to govern flows
- **Stochastic**: *probability* that an element transitions between states.
 - Uses a draw from a probability distribution to govern flows

Example: A very simple COVID model has two transitions:

Model component 3: Transitions

- For "open populations"
 - Can also represent entry, from outside the model
 - And exit, to outside the model

Key transition: Infection

Many different modes of transmission:

STD/HIV:	direct body fluid contact (sex, needles, MTC)
COVID, Measles, Influenza	respiratory, air-borne
Diarrheal diseases:	fecal-oral
Malaria:	vector-borne (mosquitoes)
Schistosomiasis:	water and vector-borne
Cholera:	water and food-borne

Key transition: Infection

Focus on person-to-person transmission this week

- It's a natural way to introduce network modeling
- The personal contact network becomes the foundation of the transmission network
- But the concepts and methods here are general
 - You can represent contact networks of animals
 - Or multi-layer networks of persons and vectors
 - Or bipartite networks of persons and places
 - •

Finally: Different modeling frameworks

• While all epidemic models share certain components

- Elements, states, transitions
- There are different ways to represent the system as a mathematical model
 - Deterministic Compartmental Models (DCMs)
 - Stochastic Individual-based Contact Models (ICMs)
 - Stochastic Network Models
- The framework you choose has a big impact...

Poker chips to epidemic modeling terminology

Poker chip component	Model component	Model Terminology	
Poker chips	Elements	Individuals	
Color	States	Individual disease status	
Bag	Population	Population size (N, finite)	
Draw out of bag		Act	
Draw blue and red *	Transition (infection, stochastic)	Discordant pair (SI)	
Blue exchanged for red		Transmission	
* Blind draws out of bag	Model assumption	Random mixing	
Red exchanged for white	Transition (recovery, deterministic)	Recovery with immunity	