NME Workshop 1



**Network Modeling for Epidemics** 

# DAY 3: PRACTICE WITH EGOCENTRIC DATA AND TARGET STATISTICS

Martina Morris, Ph.D. Steven M. Goodreau, Ph.D. Samuel M. Jenness, Ph.D.

Supported by the US National Institutes of Health



- Newly developed package *ergm.ego* can do much of the following for you
- Still worth understanding the nature of what is going on mechanically
- Definitely worth understanding how different assumptions lead to different values of statistics

## Practice

- You have a sample of 20 heterosexuals
- They live in two communities
- You have extracted their partnerships on the day of the interview
- You want to simulate an artificial population of size 2,000
- You want to include in your model mixing by community as well as sex-specific degree distributions
- You notice that nobody has more than two ongoing ties
- Relationships average 60 time steps
- How do you set up your network? What model terms and target stats will you specify?

## **Egocentric data**

#### **Ongoing partnerships by sex and community of ego and alters**

| Ego | Partner 1 | Partner 2 |
|-----|-----------|-----------|
| F1  | M1        |           |
| F1  |           |           |
| F1  | M1        | M1        |
| F1  | M1        |           |
| F2  | M2        |           |
| F2  | M1        |           |
| F2  | M2        |           |
| F2  |           |           |
| F2  |           |           |
| F2  | M1        |           |

| Ego | Partner 1 | Partner 2 |
|-----|-----------|-----------|
| M1  | F1        | F1        |
| M1  |           |           |
| M1  |           |           |
| M1  | F2        |           |
| M2  | F2        |           |
| M2  |           |           |
| M2  | F2        | F1        |
| M2  | F1        |           |
| M2  | F2        | F2        |
| M2  |           |           |

## Set up network

- Note: you got lucky!
  - Sample has same # of males and females, and same community breakdown for each
  - Just need to scale up to 2,000

```
library(EpiModel)
mynet <- network_initialize(2000)
sex <- c(rep(1, 1000), rep(2, 1000))
mynet <- set_vertex_attribute(mynet, 'group', sex)
cmty <- c(rep(1,400), rep(2,600), rep(1,400), rep(2,600))
mynet <- set_vertex_attribute(mynet, 'cmty', cmty)</pre>
```

# Establish terms and target stats

#### Term for overall relational effect

- ~edges
- Have to reconcile that male mean deg = 0.9 and female mean deg = 0.8, and sex ratio in sample is equal
- Could:
  - 1. assume a different sex ratio in population
  - 2. assume males are over-reporting (or sample is biased towards more active males)
  - assume females are under-reporting (or sample is biased towards less active females)
- We'll assume some of 2&3
- Target stat = 850 = (2000 \* 0.85 / 2)

# Establish terms and target stats

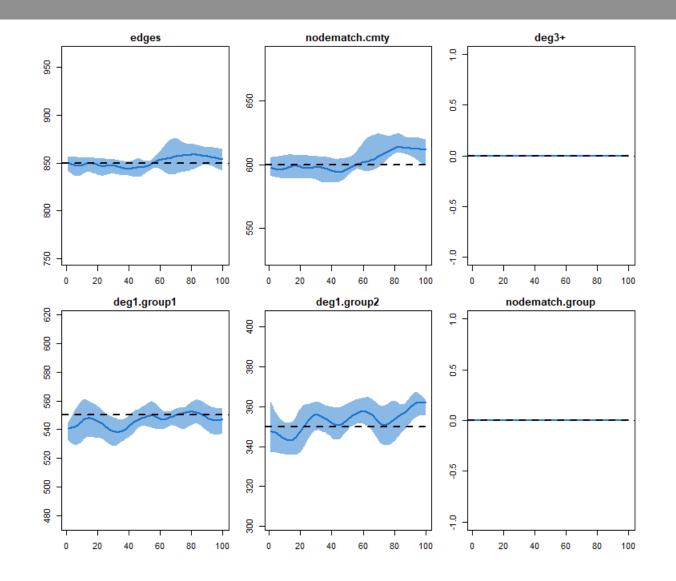
#### Mean degree by community

- Mean deg for community 1 = 7/8 = 0.875
- Mean deg for community 2 = 10/12 = 0.833
- Worth modeling this difference?
- Could put in a nodefactor term into the ergm and see whether it is significant
- Foreshadowing: it's not, so we'll just ignore
- Mixing by community:
  - Proportion of ties that are within community = 12/17 = 0.706
  - Term: ~nodematch('cmty')
  - Target stat = 0.706\*850 = 600

## Establish terms and target stats

- Let's first add a constraint that nobody has >2 partnerships at a time
  - term = degrange(from=3)
  - target stat = 0
- Then add degree terms = ~degree (1, by='group')
- Why only 1 term per sex?
  - Target stats gets very tricky, since the mean degree was not the same by sex
  - How to adjust degree distribution for each sex to match the new degree distribution?
  - You must make assumptions
  - Observed degree dist =

| Deg      | F    | Μ    |
|----------|------|------|
| 0        | 0.30 | 0.40 |
| 1        | 0.60 | 0.30 |
| 2        | 0.10 | 0.30 |
| Mean deg | 0.80 | 0.90 |

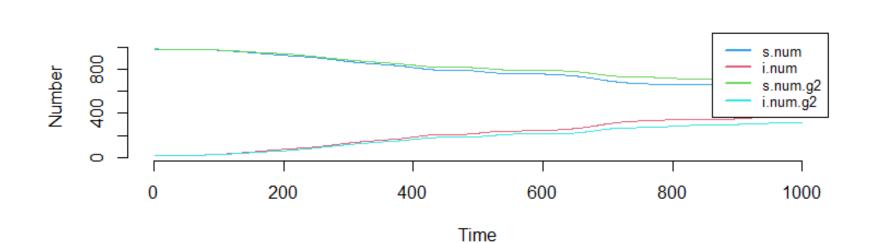

Let's assume that all of the movement is between 1&2

| Deg      | F    | Μ    |
|----------|------|------|
| 0        | 0.30 | 0.40 |
| 1        | 0.55 | 0.35 |
| 2        | 0.15 | 0.25 |
| Mean deg | 0.85 | 0.85 |

• target stats = c(550, 350) = c(0.55\*1000, 0.35\*1000)

# Estimating and diagnosing

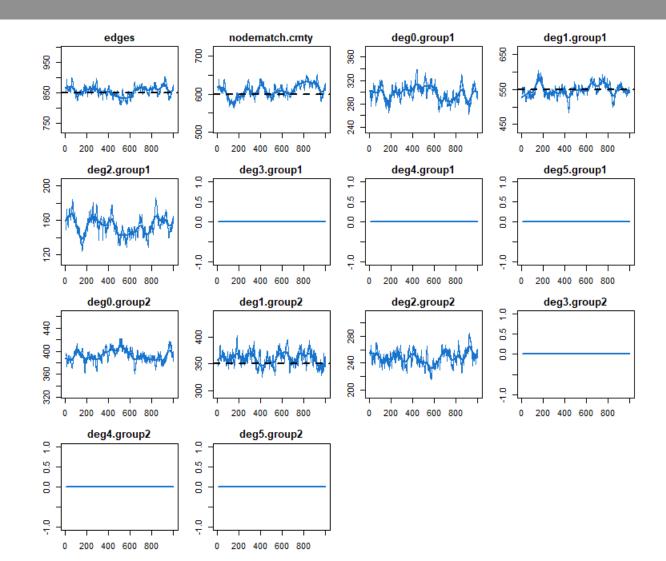
## Estimating and diagnosing




10

## **Disease simulation**

• Let's do a disease simulation on top of it just for fun!


## **Disease simulation**



## Examining target stats

get\_nwstats(mySIS)
plot(mySIS, type = "formation", sim.lines = TRUE)

## Examining target stats



14